

Suspensions of viscoelastic capsules: effect of membrane viscosity on transient dynamics

Fabio Guglietta¹, Francesca Pelusi², Othmane Aouane³, Marcello Sega⁴, Jens Harting^{3,5}

1 Tor Vergata University of Rome, Dept. of Physics & INFN (IT)

2 Italian National Research Council (CNR), Institute for Applied Mathematics (IT)

3 Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Dept. of "Dynamics of Complex Fluids and Interfaces" (DE)

4 University College London (UCL), Dept. of Chemical Engineering (UK)

5 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Dept. of Chemical and Biological Engineering & Dept. of Physics (DE)

Fabio Guglietta - guglietta@roma2.infn.it

Motivations: why viscoelastic capsules are important?

⁽²⁾ Guglietta, F., Behr, M., Falcucci, G., & Sbragaglia, M. (2021). Loading and relaxation dynamics of a red blood cell. Soft Matter, 17(24), 5978-5990.

Fabio Guglietta - guglietta@roma2.infn.it

Outlook

- Aim: Characterise the effect of membrane viscosity on the mechanical response (i.e., deformation, loading time) of suspensions of viscoelastic spherical capsules.
- Numerical model:
 - Viscoelastic membrane model
 - Fluid solver
- Results:
 - Single viscoelastic capsule
 - **Suspensions** of viscoelastic capsules

Numerical model

Membrane model

(1) Skalak, R., Tozeren, A., Zarda, R. P., & Chien, S. (1973). Strain energy function of red blood cell membranes. Biophysical journal, 13(3), 245-264.

(2) Krüger, T. (2012). Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear. Springer Science & Business Media.

(3) Barthès-Biesel, D., & Sgaier, H. (1985). Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow. Journal of Fluid Mechanics, 160, 119-135.

(4) Li, P., & Zhang, J. (2019). A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes. Int. J. Numer. Methods Biomed. Eng., 35(6), e3200.

(5) Aouane, O., Scagliarini, A., & Harting, J. (2021). Structure and rheology of suspensions of spherical strain-hardening capsules. Journal of Fluid Mechanics, 911.

APS 2023

(5120 faces)

Immersed boundary - lattice Boltzmann (IB-LB) method 🗾 TOR VERGATA

(1) Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. M. (2017). The lattice Boltzmann method. Springer International Publishing, 10(978-3), 4-15.

APS 2023

Fluid density

Eulerian node (outer)

Lagrangian node

Results: single capsule

Single capsule in simple shear flow

0.05

0.00

APS 2023

40

 t/t^*

60

20

100

80

Results: suspensions of capsule

Suspension of viscoelastic capsules

Reynolds number:

Capillary nu

Capillary number:
$$Ca = \frac{\dot{\gamma}\mu r}{k_s} = \dot{\gamma}t^* \in [0.1,1]$$

Boussinesq number: $Bq = \frac{\mu_m}{\mu r} \in [0,50]$
Volume fraction: $\phi = \frac{\sum_i V_i}{L^3} \in [0.001,0.4]$

 $\operatorname{Re} = \frac{\dot{\gamma}\rho r^2}{\mu} = 10^{-2}$

Deformation:

Boussinesq

 $\langle D \rangle = \frac{1}{N} \sum_{i} D_i(t)$

Radius: r Shear rate: $\dot{\gamma}$ Fluid viscosity: μ Capsule Volume: V_i Membrane viscosity: μ_m Intrinsic time: $t^* = \mu r/k_s$

 $d_{q}(t)$

Rheology: relative viscosity

Einstein, A. (1905). *Eine neue bestimmung der moleküldimensionen* (Doctoral dissertation).
Batchelor, G. K., & Green, J. (1972). The determination of the bulk stress in a suspension of

[2] Batchelor, G. K., & Green, J. (1972). The determination of the bulk stress in a suspension of spherical particles to order c2. *Journal of Fluid Mechanics*, *56*(3), 401-427.

Deformation and inclination angle

Membrane viscosity and volume fraction

When the volume fraction increases, the viscous dissipation reduces

What's the effect of reprint ane viscos at the effect of reprint the state of the s

- For a fixed value of ϕ , the effect f_{ϕ} is to:
 - reduce the deformation
 - increase the loading time

- When ϕ increases:
 - the effect of Bq on D reduces
 - the effect of Bq on t_L almost vanishes

00

 \bigcirc

 \bigcirc

TOR /ERGA

٥

This work was supported by the Italian Ministry of University and Research (MUR) under the FARE programme, project "Smart-HEART"

<u>**Guglietta, F.</u>**, Pelusi, F., Sega, M., Aouane, O., & Harting, J. (2023). *Suspensions of viscoelastic capsules: Effect of membrane viscosity on transient dynamics.* Journal of Fluid Mechanics, **971**, A13. doi:10.1017/jfm.2023.694</u>

BACKUP SLIDES

- The steady value of deformation may depend on the value of membrane viscosity
- **The rotation** of the membrane **dissipates** part of the energy otherwise used to **deform** the membrane.

F. Guglietta et al., "Loading and relaxation dynamics for a red blood cell", *Soft matter*, 17, 5978-5990, 2021.

Single capsule in simple shear flow

Fabio Guglietta - guglietta@roma2.infn.it

Deformation and inclination angle

Fabio Guglietta - guglietta@roma2.infn.it

\bigcirc Δ Loading time and trequency

Fabio Guglietta - guglietta@roma2.infn.it

Single capsule: particle stress

Radii

Fabio Guglietta - guglietta@roma2.infn.it

Initialisation

